The 2021 International Society for the Study of Hypertension in Pregnancy classification, diagnosis & management recommendations for international practice

Laura A Magee, Mark A. Brown, David R. Hall, Sanjay Gupte, Annemarie Hennessy, S. Ananth Karumanchi, Louise C. Kenny, Fergus McCarthy, Jenny Myers, Liona C. Poon, Sarosh Rana, Shigeru Saito, Anne Cathrine Staff, Peter von Dadelszen

Abstract

All units managing hypertensive pregnant women should maintain and review uniform departmental management protocols and conduct regular audits of maternal & fetal outcomes.

The cause(s) of pre-eclampsia and the optimal clinical management of the hypertensive disorders of pregnancy remain uncertain; therefore, we recommend that every hypertensive pregnant woman be offered an opportunity to participate in research, clinical trials and follow-up studies.

Abbreviations: ABPM, ambulatory 24-hour blood pressure monitoring; ACR, albumin:creatinine ratio; AKI, acute kidney injury; ART, assisted reproductive technology; BID, twice daily; BMI, body mass index; BP, blood pressure; CKD, chronic kidney disease; FGR, fetal growth restriction; FIGO, International Federation of Gynecology and Obstetrics; GPP, good practice point; HBPM, home blood pressure monitoring; HDP, hypertensive disorder of pregnancy; HELLP syndrome, Haemolysis, Elevated Liver enzymes, Low Platelet syndrome; ISHHP, International Society for the Study of Hypertension in Pregnancy; ISUOG, International Society for Ultrasound in Obstetrics and Gynecology; IV, intravenous; LA, long-acting; MgSO4, magnesium sulphate; MR, modified release; NICU, neonatal intensive care unit; PA, prolonged action; PlGF, placental growth factor; QAM, every morning; QID, four times daily; QPM, every evening; OR, odds ratio; PrCr, protein:creatinine ratio; RCT, randomised controlled trial; RR, relative risk; sFlt-1, soluble fms-like tyrosine kinase-1; TID, three times daily; WHO, World Health Organization; XL, extended-release.

* This document has been endorsed by World Organization Gestosis and the Japanese Society for the Study of Hypertension in Pregnancy.

† Corresponding author at: Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, Becket House, 1 Lambeth Palace Road, Room BH.05.11, London SE1 7EU, UK.

E-mail address: Laura.a.magee@kcl.ac.uk (L.A. Magee).

https://doi.org/10.1016/j.preghy.2021.09.008

Received 28 September 2021; Accepted 30 September 2021

Available online 9 October 2021

© 2021 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.
Recommendations

Diagnosis of hypertension and proteinuria
1. Blood pressure (BP) should be measured using standardised technique, including women’s position (sitting, feet flat on floor), cuff size (‘large’ if the mid-upper arm circumference is ≥33 cm), Korotkoff V for the diastolic BP (dBP), and arm used (both, at least initially) (⊕⊕⊕Ο/Strong).
2. BP taken in pregnancy or postpartum, in any setting, should be measured using a device validated for use in pregnancy and pre-eclampsia (⊕⊕⊕Ο/Strong).
3. Hypertension should be defined as a systolic BP (sBP) ≥ 140 mmHg and/or dBP ≥ 90 mmHg, based on an average of at least two measurements (⊕⊕⊕Ο/Strong).
4. BP should be repeated to confirm true hypertension; if hypertension is severe (sBP ≥ 160 and/or dBP ≥ 110 mmHg), then repeat within 15 min; otherwise, repeat in at least 4 h or on two consecutive outpatient visits (Good practice point, GPP).
5. Quantitative proteinuria testing for pre-eclampsia should be performed as part of the work-up for women suspected of having pre-eclampsia or at high-risk of developing it (⊕⊕⊕Ο/Strong).
6. Proteinuria should be defined as ≥ 30 mg/mmol urinary protein: creatinine ratio (PrCr) in a spot (random) urine sample, or albumin:creatinine ratio (ACR) ≥ 8 mg/mmol, or ≥ 0.3 g/d in a complete 24-hour urine collection, or ≥ 2 + by urinary dipstick if confirmatory testing is not available (⊕⊕ΟΟ/Strong).

Classification
7. The hypertensive disorders of pregnancy (HDPs) should be classified according to the criteria presented in Table 1.
8. The ISSHP does not suggest routine testing for secondary causes of hypertension in the absence of clinical clues to these conditions (⊕ΟΟΟ/Strong).
9. Women with white-coat hypertension should undertake regular home BP monitoring (HBPM) (⊕ΟΟΟ/Strong).
10. Pre-eclampsia should not be classified as ‘mild’ or ‘severe’ in an ongoing pregnancy (⊕ΟΟΟΟ/Strong).

See Table 1 and text.
11. An elevation in BP should not be used to make a diagnosis of pre-eclampsia superimposed on chronic hypertension (⊕ΟΟΟ/Strong).
12. To the assessment of women suspected of having pre-eclampsia (<37 weeks), we recommend adding evaluation of angiogenic imbalance, when available, as a marker of uteroplacental dysfunction to be assessed and managed in hospital, before carefully-selected cases are considered for outpatient care (GPP).

Prediction of pre-eclampsia
13. At minimum, women should be screened for clinical risk markers of pre-eclampsia risk at antenatal care booking (GPP).
14. If testing is available, after appropriate counselling, women should be screened at 11–14 weeks for preterm pre-eclampsia risk, using a combination of clinical risk factors, BP, uterine artery pulsatility index, and PIhG, as available, even if they have been already been identified as having clinical ‘high-risk’ factors (⊕ΟΟΟΟ/Strong).

Prevention of pre-eclampsia
All women in pregnancy
15. Unless there are contraindications, all women should exercise in pregnancy to reduce the likelihood of gestational hypertension and pre-eclampsia (⊕ΟΟΟΟ/Strong).
16. For women with dietary intake of calcium (<900 mg/day), oral calcium supplementation of at least 500 mg/d is recommended (⊕ΟΟΟ/Weak).
17. Women should NOT receive low-molecular-weight heparin*, vitamins C or E, or folic acid for pre-eclampsia prevention (⊕ΟΟΟΟ/Strong).

* This recommendation relates to use of heparin for pre-eclampsia prevention, and not for other indications, such as thromboprophylaxis in antiphospholipid antibody syndrome.

Women at increased risk of pre-eclampsia*
18. Low-dose aspirin is recommended (⊕ΟΟΟΟΟ/Strong), to be taken at bedtime (⊕ΟΟΟΟΟ/Strong), preferably before 16 weeks and discontinued by 36 weeks (⊕ΟΟΟΟΟ/Strong).
19. After multivariable screening, aspirin should be given at a dose of 150 mg/night (⊕ΟΟΟΟΟ/Strong).
20. After screening with clinical risk factors and BP, aspirin should be given at a dose of 100–162 mg/d (⊕ΟΟΟΟΟ/Strong).

Management
Place of care
21. Women with pre-eclampsia or severe hypertension should be assessed and managed in hospital, before carefully-selected cases are considered for outpatient care (GPP).

Antihypertensive therapy
22. Hypertension in pregnancy should be treated with antihypertensive therapy, irrespective of the underlying HDP (⊕ΟΟΟΟΟ/Strong).
23. Severe hypertension in pregnancy (i.e., sBP ≥ 160 mmHg or dBP ≥ 110 mmHg) requires urgent antihypertensive therapy, in a monitored setting (⊕ΟΟΟΟΟ/Strong).
24. The target BP for antihypertensive therapy should be a dBP of 85 mmHg, regardless of sBP (⊕ΟΟΟΟΟ/Strong).
25. Non-severe hypertension should be treated with the first-line agents oral methyldopa, labetalol, or nifedipine (⊕ΟΟΟΟΟ/Strong).
26. Severe hypertension should be treated with the first-line agents oral nifedipine, oral labetalol, intravenous (IV) labetalol, or IV hydralazine (⊕ΟΟΟΟΟ/Strong).

Plasma volume expansion
27. Plasma volume expansion is not recommended routinely for women with pre-eclampsia. (⊕ΟΟΟΟΟ/Strong).

Magnesium sulphate
28. Women with eclampsia should receive magnesium sulphate to prevent recurrent seizures (⊕ΟΟΟΟΟ/Strong).
29. Women with pre-eclampsia who have proteinuria and severe hypertension, or hypertension with neurological signs or symptoms, should receive magnesium sulphate for eclampsia prevention (⊕ΟΟΟΟΟ/Strong).

Timed birth
30. Indications for delivery with any HDP at any gestational age (⊕ΟΟΟΟΟ/Strong) include:

- Abnormal neurological features (such as eclampsia, severe intratable headache or repeated visual scotomata);
- Repeated episodes of severe hypertension despite maintenance treatment with three classes of antihypertensive agents;
- Pulmonary oedema;
- Progressive thrombocytopenia or platelet count <50 × 10^9/L;
- Transfusion of any blood product;
- Abnormal and rising serum creatinine;
- Abnormal and rising liver enzymes;
- Hepatic dysfunction (INR > 2 in absence of DIC or warfarin), haematoma or rupture;
- Abruption with evidence of maternal or fetal compromise; or
- Non-reassuring fetal status (including death).

31. A decision to deliver should not be based solely upon the degree of either proteinuria (⊕ΟΟΟΟΟ/Strong) or hyperuricaemia (⊕ΟΟΟΟΟ/Strong).

Antenatal corticosteroids
32. Do not administer corticosteroids to hasten resolution of Haemolysis Elevated Liver enzyme Low Platelet (HELLP) syndrome (⊕ΟΟΟΟΟ/Strong).

Postpartum care
33. For women with antepartum hypertension, BP should be monitored at least once on days 3–7 postpartum when it is likely to be highest after birth (GPP).
34. Antihypertensive therapy administered antepartum should be continued after birth. Also, consideration should be given to administering antihypertensive therapy for any hypertension diagnosed before six days postpartum (⊕⊕⊕Weak).

35. The target dBP for postpartum antihypertensive treatment should be 85 mmHg, as antenatally (⊕⊕○Weak).

36. Non-steroidal anti-inflammatory drugs (NSAIDs) for postpartum analgesia may be used in women with pre-eclampsia, if other analgesics are ineffective, and there is no acute kidney injury (AKI) or other risk factors for it (⊕⊕○Weak).

37. Breastfeeding is recommended (⊕⊕⇔Strong).

38. Counselling should be provided about the risks of gestational hypertension (at least 4%) or pre-eclampsia (at least 15%) in future pregnancy (GPP).

39. At 3 months postpartum, all women should be reviewed to ensure that BP, urinalysis, and any laboratory abnormalities have normalised. If proteinuria or hypertension persist, then appropriate referral for further investigations should be initiated (GPP).

40. At 6 months postpartum, where possible, all women should be reviewed again, at which point we suggest that BP ≥ 120/80 mmHg lead to discussion of lifestyle change (⊕⊕⊕Weak).

41. Following hypertensive pregnancy, particularly pre-eclampsia, counselling should be provided about the heightened health risks for the mother (particularly cardiovascular) and the offspring (⊕⇔Strong).

42. We recommend calculating lifetime (not 10-year) cardiovascular risk scores to estimate cardiovascular risk in these women (⊕⇔Strong).

43. Annual medical review following hypertensive pregnancy is recommended for the first 5–10 years postpartum (⊕⇔Weak).

44. Following hypertensive pregnancy, all women and their offspring should adopt a healthy lifestyle that includes eating well, exercising, aiming for ideal body weight, living smoke-free, and aiming for BP < 120/80 mmHg (⊕⇔⇔Strong).

1. Introduction

The HDPs are leading causes of maternal and perinatal mortality and morbidity worldwide. >99% of HDP-related maternal deaths occur in under-resourced settings, worldwide, while perinatal death and maternal morbidity remain major challenges for health care providers.

The International Society for the Study of Hypertension in Pregnancy (ISSHP) is committed to providing global leadership through up-to-date, evidence-based guidance for the diagnosis, prediction, prevention, and management of the HDPs. While we recognise that not all guidance can be implemented in all settings even in well-resourced settings, options for management in less-resourced settings are discussed separately. Our guidelines align with the International Federation of Gynecology and Obstetrics (FIGO), and as much as possible, with the World Health Organization (WHO), as the other international organisations providing pregnancy hypertension guidelines.

The current document represents an update of the 2018 guidance following review of published evidence [1,2]. Compared with 2018, we now grade the quality of the evidence and strength of recommendations, although where evidence is lacking, we continue to provide practical advice in the form of ‘good practice points’ (GPPs). Also, we now outline auditable standards and research recommendations.

Importantly, the ISSHP recommends that each unit has a specific policy as to management guidelines that are to be followed so that there is uniform practice within each unit. In addition, each unit should strive to record and evaluate their maternal and fetal outcomes to ensure that their policies and guidelines remain appropriate at all times.
BP measurement

BP in pregnancy should be measured using the standardised technique, as outside pregnancy. BP should be measured in both arms at least initially, and, thereafter, in the same arm for consistency, choosing the arm with the higher BP.

BP should be measured with a device validated for use in pregnancy and pre-eclampsia (and by extension, for six weeks postpartum) [4]. Mercury sphygmomanometry is no longer available. While aneroid devices are used commonly, they may over- or underestimate BP [5], and they need to be regularly calibrated. Liquid-crystal sphygmomanometry [6] is the best alternative, but, if unavailable, an automated device validated in pregnancy and pre-eclampsia is preferable; a list of suitable devices is available online [7].

Once BP is found to be elevated in a clinical setting (i.e., clinic/office, obstetrical day unit, or hospital inpatient), and there is no evidence of pre-eclampsia, ‘out-of-office’ BP monitoring (i.e., at home, by 24-hour ambulatory BP monitoring [ABPM] that takes BP regularly, or in a pharmacy) is advised. This will identify any element of white-coat hypertension, confirm the diagnosis of hypertension, and ideally, thereafter, monitor changes in BP and response to antihypertensive treatment. Also, it is wise to check a woman’s home BP device (against a calibrated device in the office) before she begins home BP monitoring (HBPM) and intermittently thereafter. ABPM remains the gold standard for BP assessment, but it is less commonly used, especially in pregnancy because of availability, convenience and women’s preferences.

Hypertension

Hypertension in pregnancy continues to be defined as a clinic sBP ≥ 140 mmHg and/or a dBP > 90 mmHg, with sBP ≥ 160 mmHg and/or a dBP ≥ 110 mmHg defined as severe hypertension. While the American Heart Association and American College of Cardiology have redefined hypertension outside pregnancy as 130/80 mmHg (‘stage 1 hypertension), the 140/90 as ‘stage 2 hypertension, these definitions have not been adopted in pregnancy, even in the United States. While stage 1 may be associated with an increased risk of adverse pregnancy outcomes [8], it has not been shown that implementing a lower diagnostic threshold for hypertension in pregnancy would improve outcomes or be cost-effective [9].

Hypertension should be diagnosed based on at least two readings, averaged to reflect the BP for the visit. If BP values are >10 mmHg different, a third measurement should be taken, and the second and third measurements used.

BP measured out-of-office is generally lower than in the clinic setting among hypertensive women, but there is wide variation [10]. (Use of out-of-office BP values to guide antihypertensive therapy is discussed under ‘Management/Antihypertensive therapy’, below.)

Proteinuria

Proteinuria may be detected qualitatively, by urinary dipstick testing (manual or automated), or quantitatively, by PrCr, ACR, or 24-hour urine collection. While testing in pregnancy is focused on detecting the proteinuria of pre-eclampsia, detecting underlying CKD that is associated with adverse pregnancy and long-term outcomes in pregnancy and long-term is important. For CKD detection, a microscopic urinalysis of the urine sediment is an important second component, to detect red or white blood cells and casts. In pregnancy, a third component not covered by these guidelines, is routine screening for asymptomatic bacteriuria by urine culture.

At antenatal care booking, screening for proteinuria may identify early CKD, leading to management in pregnancy to optimise outcomes, and after pregnancy to slow or prevent progression to end-stage kidney disease. However, urinary dipstick testing for proteinuria is a poor test for this purpose. We suggest a case-finding approach in early pregnancy, as advocated outside pregnancy, with proteinuria testing (ideally albuminuria) and microscopic urinalysis for women with dipstick haematuria or CKD risk factors, particularly Aboriginal ethnicity, chronic hypertension (see ‘Classification/Chronic hypertension’), diabetes, human immunodeficiency virus or hepatitis C virus infection, sickle cell trait, malignancy, autoimmmune disease, nephrolithiasis, recurrent urinary tract infections, or a family history of CKD. Any woman who subsequently has a pregnancy complication associated with CKD, such as pre-eclampsia or FGR, should be evaluated. (See ‘Postpartum care’.)

After antenatal care booking, the value of performing dipstick proteinuria screening at all antenatal appointments for low-risk normotensive women has been questioned [11]. Dipstick proteinuria testing has low diagnostic accuracy, being neither sensitive nor specific at the 1+ level [12]. The majority (i.e., at least two-thirds) of women who present with proteinuria without hypertension do not develop pre-eclampsia as pregnancy progresses [13-16]. Furthermore, the costs of screening all women so frequently are substantial [13,15,17]. Undertaking dipstick proteinuria (manual or automated) screening at all antenatal appointments, particularly for women with chronic hypertension or who are normotensive but otherwise at increased risk of pre-eclampsia, is common practice. As such, where resources allow and as suited to local context, proteinuria screening after booking may be undertaken to identify concerns about pre-eclampsia earlier [16].

Quantitative proteinuria testing (by urinary PrCr, ACR, or 24-hour urine collection) should be performed when pre-eclampsia is suspected, including: ≥1 + dipstick proteinuria in women with hypertension and rising BP and in women with normal BP, but symptoms or signs suggestive of pre-eclampsia. A PrCr ratio of ≥30 mg/mmol (0.3 mg/mg) is considered to be abnormal [18-21], but the test may occasionally give a false negative result, usually at <400 mg/day proteinuria [20]. A 24-hour urine collection offers no advantage [21], and should be reserved to confirm nephrotic syndrome and define the need for thromboprophylaxis. A urinary ACR ≥ 5 mg/mmol (71 mg/g) is considered to be abnormal based on its association with a definition of pre-eclampsia that included the need for more intensive monitoring and/or magnesium sulphate [21]. If confirmatory testing for dipstick proteinuria is not available, then dipstick proteinuria of ≥2+ (>1g/L) provides a reasonable assessment of true proteinuria [22-23].

Importantly, a decision to deliver should not be based upon the degree of proteinuria alone (see ‘Management/Timing of birth’, below). Proteinuria is not independently predictive of adverse maternal outcome. While absolute levels of proteinuria correlate with adverse perinatal outcomes [24-28], the predictive value of heavy (4 + dipstick) proteinuria is limited to settings without advanced fetal surveillance capacity. (Please see ‘Management/Maternal monitoring and Management/Fetal monitoring’ for details.)

3.2. Classification

Recommendations

7. The HDPs should be classified according to the criteria presented in Table 1.

8. The ISSHP does not suggest routine testing for secondary causes of hypertension in the absence of clinical clues to these conditions (⊕⊕O/Strong).

9. Women with white-coat hypertension should undertake regular HBPM (⊕⊕O/Strong).

10. Pre-eclampsia should not be classified as ‘mild’ or ‘severe’ in an ongoing pregnancy (⊕⊕O /Strong).

See Table 1 and text.

11. An elevation in BP should not be used to make a diagnosis of pre-eclampsia superimposed on chronic hypertension (⊕⊕O/Strong).

12. To the assessment of women suspected of having pre-eclampsia (<37 weeks), we recommend adding evaluation of angiogenic imbalance, when available, as a marker of uteroplacental dysfunction to be used in conjunction with other clinical tests. (⊕⊕O/Strong).

The classification of the HDPs places women into meaningful prognostic groups (Table 1). This classification differs from our 2018 guidance in that women with chronic hypertension can now be diagnosed.
with superimposed pre-eclampsia if they have evidence of uteroplacental dysfunction, this was previously excluded from the diagnosis of superimposed pre-eclampsia as a known complication of chronic hypertension.

Chronic hypertension

Chronic hypertension should be confirmed by HBPM or ABPM if at all possible, to exclude white-coat hypertension which is common (as discussed below). If access to the appropriate equipment and instructions is not possible, or women are not willing, then at minimum, elevated BP should be confirmed after repeated measurements over hours at the same visit, or on two consecutive antenatal visits [29].

Chronic hypertension is associated with an excess of adverse maternal and fetal outcomes, including superimposed pre-eclampsia (see below) [30].

Diagnostic testing and ongoing monitoring of women with chronic hypertension are presented in Table 2. Most cases of chronic hypertension are due to essential hypertension, usually accompanied by a family history of hypertension and often by overweight or obesity. Unless there are clues to a secondary cause of hypertension, the ISSHP does not recommend routine investigations (e.g., renal ultrasound). Chronic hypertension is best managed by ‘tight’ control of BP (see ‘Management/Antihypertensive therapy’, below).

White-coat hypertension is common (≈30% of chronic hypertension) and associated with an increased risk of pre-eclampsia [31–32]. HBPM is necessary to manage white-coat hypertension, as it is reasonable to withhold antihypertensive therapy when home BP values are normal. In the absence of severe hypertension (≥160/110 mmHg), we suggest relying on average BP over several days, rather than acting on single readings [33].

Masked hypertension is probably less common in pregnancy, but much less is known about this compared with white-coat hypertension. It is typically diagnosed by HBPM or ABPM that is initiated when there is evidence of hypertensive target organ damage in the mother (e.g., unexplained CKD, or left ventricular cardiac hypertrophy) or uteroplacental dysfunction, but there is no apparent hypertension in clinic.

Gestational hypertension

Transient gestational hypertension resolves with repeated BP measurements, such as those taken over the course of several hours in a Day Assessment Unit. This is not the same as white-coat hypertension, which is associated in early pregnancy with completely normal out-of-office BP measurements. Transient gestational hypertension is associated with a 40% risk of subsequent true gestational hypertension or pre-eclampsia [34], warranting additional monitoring throughout the remainder of pregnancy, ideally including HBPM.

Persistent gestational hypertension is associated with outcomes that are dependent on the gestational age at which hypertension develops after 20 weeks. About 25% of women who present with gestational hypertension at <34 weeks’ will progress to pre-eclampsia and have poorer outcomes [35].

When a woman presents for antenatal care at ≥20 weeks, without knowledge of prior BP values, and she is found to be hypertensive, she should be managed in pregnancy as if she has gestational hypertension or pre-eclampsia, unless, or until the balance of evidence shows

Table 1

<table>
<thead>
<tr>
<th>Classification of the HDPs.</th>
<th>Type of hypertensive disorder</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-pregnancy or at ≤ 20 weeks</td>
<td>Chronic hypertension</td>
<td>Hypertension detected pre-pregnancy or before 20 weeks’ gestation</td>
</tr>
<tr>
<td></td>
<td>Essential hypertension</td>
<td>Hypertension without a known secondary cause</td>
</tr>
<tr>
<td></td>
<td>Secondary hypertension</td>
<td>Hypertension with a known secondary cause (e.g., renal disease)</td>
</tr>
<tr>
<td></td>
<td>White-coat hypertension</td>
<td>sBP ≥ 140 and/or dBP ≥ 90 mmHg when measured in the office or clinic, and BP < 135/85 mmHg using HBPM or ABPM readings</td>
</tr>
<tr>
<td></td>
<td>Masked hypertension</td>
<td>BP that is ≤140/90 mmHg at a clinic/office visit, but >135/85 mmHg at other times outside the clinic/office</td>
</tr>
<tr>
<td>≥20 weeks</td>
<td>Gestational hypertension</td>
<td>Hypertension arising de novo at ≥20 weeks’ gestation in the absence of proteinuria or other findings suggestive of pre-eclampsia</td>
</tr>
<tr>
<td></td>
<td>Transient gestational hypertension</td>
<td>Hypertension arising at ≥20 weeks’ gestation in the clinic, which resolves with repeated BP readings</td>
</tr>
<tr>
<td></td>
<td>Pre-eclampsia*</td>
<td>Pre-eclampsia (de novo) is gestational hypertension accompanied by one or more of the following new-onset conditions at ≥20 weeks’ gestation: 1. Proteinuria 2. Other maternal end-organ dysfunction, including: • Neurological complications (e.g., eclampsia, altered mental status, blindness, stroke, clonus, severe headaches, or persistent visual scotomata) • Pulmonary oedema • Haematological complications (e.g., platelet count < 150,000/μL, DIC, haemolysis) • AKI (such as creatinine ≥ 90 μmol/L, or 1 mg/dL) • Liver involvement (e.g., elevated transaminases such as ALT or AST > 40 IU/L with or without right upper quadrant or epigastric abdominal pain) 3. Uteroplacental dysfunction (e.g., placental abruption, angiogenic imbalance, fetal growth restriction, abnormal umbilical artery Doppler waveform analysis, or intraterine fetal death).</td>
</tr>
<tr>
<td></td>
<td>Superimposed on chronic hypertension</td>
<td>Among women with chronic hypertension, development of new proteinuria, another maternal organ dysfunction(s), or evidence of uteroplacental dysfunction (as above).</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Chronic hypertension – diagnostic testing and monitoring.</th>
<th>DIAGNOSIS</th>
<th>MONITORING</th>
</tr>
</thead>
<tbody>
<tr>
<td>All women with chronic hypertension should have the following tests performed at first diagnosis in pregnancy, to provide a baseline reference should suspicion arise later in pregnancy of superimposed pre-eclampsia (GPP):</td>
<td></td>
<td>The frequency of follow-up should be guided by BP level and other individual risks of adverse outcome (GPP).</td>
</tr>
<tr>
<td>• Urine microscopy and urinary protein excretion (ideally, by PrCr or ACR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Full blood count for platelet count (and haemoglobin);</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Serum creatinine; and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Liver enzymes (AST or ALT).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional testing can be performed if abnormalities are detected, such as other electrolytes, and renal ultrasound if serum creatinine or urinary dipstick testing are abnormal, LDH and a blood film (for schistocytes) if haemolysis is suspected, or 24-hour urine collection (for proteinuria) and serum albumin if nephrotic syndrome is suspected. If resources are limited, prioritise evaluation of urinary protein excretion and serum creatinine.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACR (albumin:creatinine ratio), ALT (alanine aminotransferase), AST (aspartate aminotransferase), BP (blood pressure), GPP (good practice point), LDH (lactate dehydrogenase), PrCr (protein:creatinine ratio).
Table 3
Gestational hypertension – diagnostic testing and monitoring.

<table>
<thead>
<tr>
<th>DIAGNOSIS</th>
<th>ONGOING SURVEILLANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women should undergo testing for pre-eclampsia to rule it out (⊕⊕⊕).</td>
<td>Antenatal contacts should occur at least once weekly (GPP). Proteinuria testing should be performed at each subsequent antenatal visit (⊕⊕⊕). The risk of adverse maternal outcomes increases with earlier gestational age and/or the onset/worsening of the following features that women should be informed to report between visits, according to the miniPIERS model (https://pre-empt.bcchr.ca/evidence/minipiers):</td>
</tr>
<tr>
<td>Angiogenic markers (if available) could be performed; if normal, the diagnosis of gestational hypertension would be strengthened (⊕⊕). Fetal ultrasound (where available) should be performed to assess fetal growth, amniotic fluid volume and umbilical artery Doppler (⊕⊕⊕). If FGR is detected, local/national fetal surveillance guidance should be followed [1] (GPP).</td>
<td></td>
</tr>
</tbody>
</table>

FGR (fetal growth restriction), GPP (good practice point), PIERS (Pre-eclampsia Integrated Estimate of Risk Score), sBP (systolic blood pressure).

otherwise.

Diagnostic testing and ongoing monitoring of women with gestational hypertension are presented in Table 3. Where angiogenic marker testing is available, the lack of angiogenic imbalance, as assessed by normal PI GF (≥5th centile for gestational age) or normal sFlt/PIGF ratio, suggests that there is no uteroplacental dysfunction. In the absence of other markers of pre-eclampsia (see below), a diagnosis of gestational hypertension can be made. Rarely (<1%), these women will require delivery for pre-eclampsia within the next 7–14 days, although some (up to ~20%) will evolve into pre-eclampsia at some point [36–38]. Appropriate investigations should be done after pregnancy to determine if she has underlying chronic hypertension; this will generally be apparent because the BP will not have normalised within three months after birth; see ‘Postpartum care’ for details.

Pre-eclampsia

Pre-eclampsia is the most dangerous of the HDPs; world-wide, each year, pre-eclampsia is responsible for over 500,000 fetal and neonatal deaths and over 70,000 maternal deaths.

While the definition of pre-eclampsia has not changed (Table 1), further clarity has been provided by additional examples of other maternal organ dysfunction (i.e., pulmonary oedema) and uteroplacental dysfunction (i.e., placental abruption, angiogenic imbalance). Given the international target audience, we rely on locally-accepted definitions. ‘Other’ maternal organ dysfunction includes rarer complications, such as ascities or Bell’s palsy.

Pre-eclampsia may develop or be recognised for the first time intrapartum or early postpartum. Superimposed pre-eclampsia may develop in ~25% of women with chronic hypertension and even more women with underlying renal disease, including those with renal transplants [39]. Pre-eclampsia can deteriorate rapidly and without warning, which is why the ISSHP does not recommend classifying it as non-severe or severe. The HELLP syndrome (full or partial, with only some manifestations, such as elevated liver enzymes and low platelets) is a (serious) manifestation of pre-eclampsia and not a separate disorder.

Among women with chronic hypertension, rises in BP are insufficient to diagnose superimposed pre-eclampsia, as such rises are difficult to distinguish from the usual increase in BP after 20 weeks’ gestation.

Proteinuria is not mandatory for the diagnosis, but it is commonly present (in up to 75% of cases) [40]. Also, among women with proteinuric renal disease, an increase in proteinuria during pregnancy is insufficient to diagnose superimposed pre-eclampsia. Other manifestations of pre-eclampsia (such as severe headache) are also common in pregnancy, but in the context of new-onset hypertension, it is safest to consider such a woman to have pre-eclampsia and manage accordingly. Elevated serum uric acid corrected for gestational age has been associated with elevated perinatal risk and uteroplacental dysfunction [41–43], but it was not independently predictive of adverse maternal outcome in multivariable modelling [44]. Hyperreflexia is not a diagnostic criterion as it is non-specific, often present in otherwise well young women, and is highly subject to observer interpretation.

Diagnostic testing and ongoing monitoring of women with pre-eclampsia are presented in Table 4.

Angiogenic imbalance

Angiogenic imbalance, as assessed by reduced PI GF (<5th centile for gestational age) or increased sFlt/PIGF ratio (e.g., >38 by the Roche assay), has been actively evaluated for its role in making an earlier diagnosis of pre-eclampsia based on the presence of uteroplacental dysfunction. (For prediction of pre-eclampsia, see ‘Prediction below’).

Systematic review (33 studies, 9426 women) has confirmed that angiogenic imbalance shows promise for prediction of adverse maternal and perinatal outcomes, although there is substantial between-study

Table 4
Pre-eclampsia: diagnostic testing and ongoing monitoring.

<table>
<thead>
<tr>
<th>DIAGNOSIS</th>
<th>ONGOING SURVEILLANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women should undergo comprehensive testing for pre-eclampsia (⊕⊕⊕).</td>
<td>Women suspected of having pre-eclampsia superimposed on chronic hypertension should undergo the same testing as for women with de-novo pre-eclampsia (⊕⊕⊕). Maternal testing should include the following components of the fullPIERS model (https://pre-empt.bcchr.ca/evidence/fullpiers), which along with earlier gestational age and the symptoms of chest pain/dyspnoea, identify women at increased risk of adverse maternal outcomes (⊕⊕⊕):</td>
</tr>
<tr>
<td>Women suspected of having pre-eclampsia superimposed on chronic hypertension should undergo the same testing as for women with de-novo pre-eclampsia (⊕⊕⊕). Maternal testing should include the following components of the fullPIERS model (https://pre-empt.bcchr.ca/evidence/fullpiers), which along with earlier gestational age and the symptoms of chest pain/dyspnoea, identify women at increased risk of adverse maternal outcomes (⊕⊕⊕):</td>
<td>Women with pre-eclampsia superimposed on chronic hypertension should undergo the same surveillance as for women with de-novo pre-eclampsia (⊕⊕⊕). Once confirmed as significant, proteinuria testing does not need to be repeated (⊕⊕Ο/Strong). Maternal testing, at least twice weekly, should include re-evaluation of the following components of the fullPIERS model (https://pre-empt.bcchr.ca/evidence/ fullpiers) (⊕ΟΟ):</td>
</tr>
<tr>
<td>O/Strong). Maternal</td>
<td>gestational age</td>
</tr>
<tr>
<td>testing for pre-eclampsia (⊕ΟΟ).</td>
<td>chest pain or dyspnoea</td>
</tr>
<tr>
<td>Maternal</td>
<td>oxygen saturation</td>
</tr>
<tr>
<td>testing</td>
<td>platelet count</td>
</tr>
<tr>
<td>should be performed at each subsequent prenatal visit (⊕ΟΟΟΟ):</td>
<td>serum creatinine</td>
</tr>
<tr>
<td>• AST or ALT</td>
<td>AST or ALT</td>
</tr>
<tr>
<td>Angiogenic markers (if available) could be performed; if there is angiogenic imbalance, the diagnosis of pre-eclampsia would be strengthened (⊕ΟΟΟΟ). Fetal ultrasound should be performed to assess fetal growth, amniotic fluid volume and umbilical artery Doppler (⊕ΟΟΟ). If FGR is detected, ISUOG fetal surveillance guidance [2] should be followed (GPP).</td>
<td>Upon admission to delivery suite, women with pre-eclampsia should have a platelet count done, regardless of when this was last performed (GPP). There is insufficient evidence to recommend re-evaluation with angiogenic markers (⊕ΟΟΟΟ). Where available, fetal ultrasound should be performed once every two weeks to assess fetal growth, and at least once every two weeks to assess amniotic fluid volume and umbilical artery Doppler (⊕ΟΟΟΟ). We recommend that at <34 weeks when there is fetal growth restriction, Doppler velocimetry of the ductus venosus be performed where available, to assess risk of adverse perinatal outcome (⊕ΟΟΟΟ/Strong). We recommend against use of the biophysical profile to monitor fetuses at risk in hypertensive pregnancy (⊕ΟΟΟΟ/Strong).</td>
</tr>
</tbody>
</table>

ALT (alanine aminotransferase), AST (aspartate aminotransferase), FGR (fetal growth restriction), GPP (good practice point), ISUOG (International Society for Ultrasound in Obstetrics and Gynecology), PIERS (Pre-eclampsia Integrated Estimate of Risk Score).
angiogenic markers into investigations as another marker of uteroplacental dysfunction. Normotensive women with one/more of the symptoms or signs characteristic of pre-eclampsia (e.g., FGR) cannot be diagnosed with pre-eclampsia, but angiogenic imbalance appears to identify those at increased risk of progression to pre-eclampsia. (Normotensive FGR is covered by specific guidance [56]). Other manifestations are non-specific and overlap with other conditions, such as migraine. As such, the ISSHP advises that ‘suspected pre-eclampsia’ be used for no more than 24 h to avoid confusion.

• First, the term ‘suspected pre-eclampsia’ has been used for a broad range of women. Those with new/worsening hypertension who undergo investigations may receive a diagnosis of pre-eclampsia and angiogenic imbalance may aid in identification of uteroplacental dysfunction. Normotensive women with one/more of the symptoms or signs characteristic of pre-eclampsia (e.g., FGR) cannot be diagnosed with pre-eclampsia, but angiogenic imbalance appears to identify those at increased risk of progression to pre-eclampsia. (Normotensive FGR is covered by specific guidance [56]). Other manifestations are non-specific and overlap with other conditions, such as migraine. As such, the ISSHP advises that ‘suspected pre-eclampsia’ be used for no more than 24 h to avoid confusion.

• Second, women with ‘suspected pre-eclampsia’ have often been studied where pre-eclampsia was defined only by gestational hypertension and proteinuria [37,47,57], or women with new dipstick proteinuria did not necessarily undergo confirmatory testing for proteinuria prior to enrolment [36,38]. As such, many women with ‘suspected pre-eclampsia’ would have already satisfied the current ISSHP broad definition of pre-eclampsia. It is possible that the ability of angiogenic markers to predict ‘delivery with pre-eclampsia within 14 days’ may have been driven by the fact that many of the women already had pre-eclampsia [36]. Alternatively, angiogenic markers may add further to risk stratification among women who already meet diagnostic criteria for pre-eclampsia [58]. Further work is needed to define the added value of angiogenic markers across gestational ages.

• Third, our understanding about how best to use angiogenic markers is complicated by numerous assays and cut-off values (with PIGF varying with gestational age), and promotion as a test for pre-eclampsia rather than one for uteroplacental dysfunction that underlies many cases of preterm pre-eclampsia, but also other related conditions, like placental FGR [59].

• Finally, we do not know how angiogenic markers add to prediction of adverse outcomes based on routinely-collected data used in models [44,60], although a recent publication suggests that a multivariable approach is important [53]. If reassessment for suspected pre-eclampsia is required, limited data suggested that ≥75% of PIGF results remain similar [61].

These challenges aside, maternal circulating angiogenic markers are increasingly part of investigations for pre-eclampsia, and real-time data from a number of groups support clinical utility as a diagnostic and prognostic tool [53,62]. As such, the ISSHP has moved to incorporate angiogenic markers into investigations as another marker of uteroplacental dysfunction, similar to angiogenic marker dysregulation in FGR, but not as a sole criterion for diagnosing pre-eclampsia. Angiogenic markers may be particularly useful in the face of pre-existing proteinuria, chronic hypertension or CKD [63–64]. As making a diagnosis of pre-eclampsia is such an important clinical decision, all units are encouraged to evaluate patient preferences, resources, outcomes, and costs associated with use of these markers in their own population.

Maternal monitoring

For women with pre-eclampsia, maternal assessment should include BP and proteinuria, as well as the components of the fullPIERS (Pre-eclampsia Integrated Estimate of Risk Score) model that is predictive of adverse maternal outcome in hypertensive pregnancy and pre-eclampsia specifically, when performed at least twice weekly [44,65]. The adverse maternal outcomes are a composite derived from Delphi consensus and similar to the later 14 core maternal outcomes in pre-eclampsia (Panel), reflecting one/more of:

- maternal death;
- neurological complications (eclampsia or posterior reversible encephalopathy syndrome; stroke, transient ischaemic attack; or reversible ischaemic neurological deficit; Glasgow coma score <13);
- cardiorespiratory complications (infusion of a third parenteral anti-hypertensive drug; pulmonary oedema; positive inotropic support; myocardial ischaemia or infarction; oxygen saturation <90%; ≥50% inspired oxygen for more than one hour; intubation other than for Caesarean);
- renal complications (acute renal sufficiency [creatinine >150 μmol/L] with pre-existing renal disease, acute renal failure with pre-existing renal disease [creatinine >200 μmol/L], dialysis);
- hepatic (liver dysfunction or capsule haematomata or rupture);
- haematological (platelet count < 50 × 10⁹ per L or transfusion of any blood product);
- placental abruption;
- other (severe ascites, Bell’s palsy).

The fullPIERS model includes: gestational age, chest pain/dyspnoea, pulse oximetry, platelet count, serum creatinine, and AST or ALT [44]. By incorporating gestational age into the model, use of fullPIERS model is not restricted to a specific gestational age range, like the PREP model developed for use in pre-eclampsia before 34 weeks [66]. fullPIERS does not include proteinuria; once confirmed as present, proteinuria testing does not need to be repeated. (Please see ‘BP and proteinuria’ for further details.) An online calculator is available (https://pre-empt.bcchr.ca/evidence/fullpiers).

It is not known how, among women with pre-eclampsia, angiogenic markers (performed once or serially) may add to fullPIERS for prediction of adverse maternal outcomes, or to traditional fetal assessment for prediction of adverse perinatal outcomes. However, there are some promising publications [53,67]. Without ready access to laboratory results, miniPIERS includes: sBP, dipstick proteinuria, parity, gestational age, and symptoms (headache/visual symptoms, chest pain/dyspnoea, abdominal pain with vaginal bleeding); model performance is improved with addition of pulse oximetry [68–69]; an online calculator is available (https://pre-empt.bcchr.ca/evidence/minipiers). With ready access to laboratory results, fullPIERS includes: gestational age, chest pain/dyspnoea, pulse oximetry, platelet count, serum creatinine, and AST or ALT [44]. While clonus reflects central nervous system irritability, the reproducibility of clonus testing (in the maternity setting) and its independent predictive value for adverse outcome is uncertain. Uric acid has been associated with heightened risk of adverse maternal and fetal outcomes, particularly when gestational age corrected, but the test was not independently predictive of adverse maternal outcomes in fullPIERS [41].

Fetal monitoring

Although multiple methods of fetal surveillance are available, there is no strategy of various methods and timings that has been recognised to be superior in hypertensive pregnancy specifically. For the four fetal and four neonatal adverse outcomes in pre-eclampsia, see Panel [70].

While serial FHR monitoring is common practice in hypertensive
pregnancy, the effectiveness of this approach in reducing adverse outcome and the optimal frequency, if any, is undetermined. Where resources are limited, CTGs performed 6-hourly in inpatient women have been used to monitor for placental abruption [71–72].

As the fetus with growth restriction and/or reduced amniotic fluid volume is at particular risk of stillbirth and neonatal mortality and morbidity, ultrasonographic assessment of fetal growth and liquor volume is recommended. Given the shared origins of pre-eclampsia and FGR [73], we recommend that care-providers follow current ISUOG guidance for women with suspected FGR [56]. Doppler ultrasound of the umbilical artery may reduce perinatal death and obstetric intervention in high-risk pregnancies, but the evidence is not definitive [74]; it is important to note that near or at term, a normal umbilical artery Doppler does not exclude fetal compromise. At $\leq 33^{1/6}$ weeks in the presence of FGR, the addition of Doppler ultrasound of the ductus venosus may be beneficial, as an absent or reversed wave is associated with a substantially increased risk for stillbirth [75]; neurodevelopmental outcomes among survivors is improved when timing of birth is based on abnormal ductus venosus Doppler, short-term (computerised) fetal heart rate (FHR) variability, and/or spontaneous FHR decelerations [76–78].

The biophysical profile is not recommended as it can be falsely reassuring in hypertensive and fetal growth-restricted pregnancies, and an abnormal profile is a late finding [79–81].

Without ready access to methods of fetal surveillance beyond FHR monitoring, maternal characteristics (including 4 + dipstick proteinuria) can be used to estimate perinatal risk at ≥ 32 weeks; before this time, perinatal risk is almost entirely driven by gestational age [82].

4. Prediction of pre-eclampsia

Recommendations
13. At minimum, women should be screened for clinical risk markers of pre-eclampsia risk at antenatal care booking (GPP).
14. If testing is available, after appropriate counselling, women should be screened at 11–14 weeks for preterm pre-eclampsia risk, using a combination of clinical risk factors, BP, uterine artery pulsatility index, and PlGF, as available, even if they have been already been identified as having clinical ‘high-risk’ factors (⊕⊕⊕/Strong).

No first or second trimester test or set of tests can reliably predict the development of all cases of pre-eclampsia, and combined first trimester testing (described above) does not predict development of pre-eclampsia at term when most cases develop.

Large-scale epidemiological studies have identified clinical risk factors for pre-eclampsia (Table 5). The strongest are prior pre-eclampsia (RR 8.4, 95% CI 7.1, 9.9) and chronic hypertension (RR 5.1, 95% CI 4.0, 6.5). There is some disagreement as to whether some high-risk factors should be considered moderate-risk, such as obesity and those who have conceived with ART based on risks alone [83]; however, these risk factors are likely to be modifiable by aspirin and addressing by pre-pregnancy weight loss the pre-eclampsia risk associated with obesity could have a substantial impact on pre-eclampsia incidence at the population level [84]. Also, there is a wide spectrum of CKD that was not reflected in the epidemiological studies included in the predictive analyses [84–85].

Clinical measurements, and ultrasonographic and laboratory parameters have been explored during early pregnancy as tools for predicting who will later develop pre-eclampsia [86–87]. According to systematic reviews, well-studied clinical predictors have included demographic, past history, medical conditions, characteristics of current pregnancy (like conception by ART or multifetal pregnancy), physiological variables (like BP), and the social determinants of health (including nutrition). Laboratory measures have included maternal circulating angiogenic proteins (including PlGF, sFlt-1, and soluble endoglin), inflammation (including IFN-γ), lipid metabolism and oxidative stress (including ozone), cardiac function, renal function, coagulation (including genetic thrombophilia testing and anti-cardiolipin antibodies), and fetoplacental endocrine function (including beta-hCG, pregnancy-associated plasma protein A [PAPP-A], placental protein 13 [PP13], and inhibin A). Ultrasonographic measures have included uterine artery Doppler, placental vascularisation, and single fetal umbilical artery indices. Multivariable, specialised models have outperformed single factors or simple models [88].

In the multi-ethnic UK population with an incidence of pre-eclampsia of $\approx 3\%$, screening with a ‘triple test’ (of clinical risk factors plus BP, serum PlGF, and uterine artery Doppler ultrasound) can identify the largest proportion of women ($\approx 80\%$) who will go on to develop preterm pre-eclampsia [89–90]. Identifying women in this way, and giving them low-dose aspirin, reduces the incidence of preterm (but not term) pre-eclampsia [91]. An online calculator is available on the Fetal Medicine Foundation website [92] and as an app through the App Store. (For recommendations about aspirin, see ‘Prevention’ below.)

Only $\approx 10\%$ of women who develop preterm pre-eclampsia have clinical risk factors [83]. However, a large proportion (43.9%) of women with ‘strong’ clinical risk factors and the majority (70.7%) with ‘moderate’ ones screen negative by the FMF algorithm, and their risk of pre-eclampsia is substantially lower (i.e., 0.65% and 0.42%, respectively) [83]; ‘triple test’ screening, where available, should be undertaken with clear objectives in mind, such as women’s reassurance, to guide aspirin dosing, or a change in management, including surveillance.

Screening beyond clinical factors should be considered in the context of the available health care resources, and discussed with the woman [83]. The detection rate of maternal factors alone ($\approx 40\%$ of European women and 25% in Asia [93]) for preterm pre-eclampsia is inferior to maternal factors plus BP (just under 50%). A combination of maternal risk factors, BP, and uterine artery Doppler can detect just over 75% of women who will develop preterm pre-eclampsia [89]; the addition of PlGF improves detection to 80% [94]. All approaches are poor at

<table>
<thead>
<tr>
<th>Table 5</th>
<th>Clinical risk factors for pre-eclampsia identifiable in early pregnancy (modified from Bartsch et al$^+$).</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘High-risk’ factors (any one)</td>
<td>‘Moderate-risk’ factors (two or more)</td>
</tr>
<tr>
<td>Prior pregnancy history</td>
<td>Prior pre-eclampsia</td>
</tr>
<tr>
<td>Demographics</td>
<td>Pre-pregnancy BMI > 30 kg/m2</td>
</tr>
<tr>
<td>Pre-existing medical conditions</td>
<td>Chronic hypertension</td>
</tr>
<tr>
<td>This pregnancy</td>
<td>Assisted reproductive therapy‡</td>
</tr>
<tr>
<td></td>
<td>Multifetal pregnancy</td>
</tr>
</tbody>
</table>

BMI (body mass index).

$^+$ Women are considered to be at increased risk if they have at one ‘high risk’ factor or two or more ‘moderate risk’ factors.

* These have been listed as ‘high’ (not ‘moderate’ risk factors*) because of the wider spectrum of chronic kidney disease and associated adverse outcomes than evidenced in the included cohort studies [4].

† The risk of ART varies with the methods used, being highest among women receiving semen or oocyte donation and following frozen embryo transfer [5].

‡ anticoagulant therapy is associated with a substantially lower rate (i.e., 0.65% and 0.42%, respectively) [83]; ‘triple test’ screening, where available, should be undertaken with clear objectives in mind, such as women’s reassurance, to guide aspirin dosing, or a change in management, including surveillance.

Screening beyond clinical factors should be considered in the context of the available health care resources, and discussed with the woman [83]. The detection rate of maternal factors alone ($\approx 40\%$ of European women and 25% in Asia [93]) for preterm pre-eclampsia is inferior to maternal factors plus BP (just under 50%). A combination of maternal risk factors, BP, and uterine artery Doppler can detect just over 75% of women who will develop preterm pre-eclampsia [89]; the addition of PlGF improves detection to 80% [94]. All approaches are poor at...
identifying women who go on to develop term pre-eclampsia (≈40% detection) [89–90]. This multivariable approach to screening has also been validated prospectively in mixed-European, Australian, Asian, North and South American populations [93,95–100].

All measurements - clinical, laboratory, or ultrasonographic - should be performed by individuals with adequate training and who undergo ongoing quality assurance assessment. This is a critical point given that some ultrasound departments do not have staff specifically trained in uterine artery Doppler assessment despite performing these tests on a frequent basis.

While the most effective screening strategy involves a number of investigative tools, some consider screening to be complex and expensive; the costs of screening must be weighed against the short-term costs of preterm pre-eclampsia, likely driven by neonatal care unit costs [101], as well as the long-term implications of pre-eclampsia for the mother and offspring. The psychological implications of a false positive screening test for the mother have been raised as a potential concern associated with multivariable screening; however, false positive screening results occurred as frequently with multivariable screening as with clinical criteria, and women who declined to participate in the ASPRE trial were not concerned about being labelled as high risk [102]. It will be important to confirm the cost effectiveness of multivariable screening for pre-eclampsia risk and intervention, contextualised to population, disease prevalence, and models and costs of care. Given the link between prediction and prevention, these issues are discussed further under, ‘Prevention’, for aspirin.

5. Prevention of pre-eclampsia

All women in pregnancy

Recommendations

15. Unless there are contraindications, all women should exercise in pregnancy to reduce the likelihood of gestational hypertension and pre-eclampsia (⊕⊕⊕/Strong).

16. For women with low dietary intake of calcium (≤900 mg/day), oral calcium supplementation of at least 500 mg/d is recommended (⊕/Weak).

17. Women should NOT receive low-molecular-weight heparin*, vitamins C or E, or folic acid for pre-eclampsia prevention (⊕/Strong).

* This recommendation relates to use of heparin for pre-eclampsia prevention. And not for other indications, such as thromboprophylaxis in antiphospholipid antibody syndrome.

Women at increased risk of pre-eclampsia

Recommendations

18. Low-dose aspirin is recommended (⊕⊕⊕/Strong), to be taken at bedtime (⊕/Strong), preferably before 16 weeks and discontinued by 36 weeks (⊕/Strong).

19. After multivariable screening, aspirin should be given at a dose of 150 mg/night (⊕/Strong).

20. After screening with clinical risk factors and BP, aspirin should be given at a dose of 100–162 mg/d (⊕⊕/Strong).

No treatment to date can prevent pre-eclampsia in all women, but there are approaches that reduce the risk.

5.1. Exercise

In RCTs, exercise reduces the risk of both gestational hypertension (OR 0.61, 95% CI 0.43, 0.85) and pre-eclampsia (OR 0.59, 95% CI 0.37, 0.90) (as well as gestational diabetes by a similar degree) [103–104]. To achieve these reductions, women must undertake at least 140 min per week of moderate-intensity exercise, such as brisk walking, water aerobics, stationary cycling with moderate effort, resistance training, carrying moderate loads, and household chores such as gardening or washing windows. Typically during these activities, a person can talk but not sing, and notices that their heart rate has increased.

Exercise is contraindicated in all women with established pre-eclampsia, and relatively contraindicated in women with gestational hypertension [104], but among those without contraindications, there are no significant adverse effects of exercise in pregnancy.

5.2. Calcium

Calcium administered from 20 weeks’ gestation is effective in decreasing pre-eclampsia risk when administered at high (1.5–2.5 g/d) or low dose (<1 g/d) and to women at high or low risk of pre-eclampsia, but only among populations with low baseline intake of calcium (≈900 mg/d) [105–106]. Currently, there is no standardised method for assessing dietary intake of calcium among individual women. The bulk of the evidence comes from women at high risk, administered high-dose calcium in low-intake populations, and there is a lack of understanding about how baseline risk, individual calcium intake, and calcium dose administered in pregnancy interact. An ongoing trial in the UK is addressing the question of very high-dose calcium administered to high-risk women in an on average, adequate calcium intake population (CaPPE trial, NIHR127325).

In a RCT of 1355 women at high risk of pre-eclampsia based on disease in prior pregnancy, calcium supplementation (vs. placebo) of 500 mg/day before pregnancy and until 20 weeks of the subsequent pregnancy (with an increase in calcium to 1.5 g/d thereafter for all women), reduced the incidence of pre-eclampsia only when compliance with tablets before 20 weeks (45.0%) was at least 80% (RR 0.66, 95% CI 0.44, 0.98), and may have reduced the incidence of pregnancy loss or pre-eclampsia (107/323, 33% vs. 126/310, 41%; RR 0.82, 95% CI 0.66, 1.00) [107]. These data serve to emphasise that low calcium intake should be addressed pre-pregnancy if possible, especially among high-risk women among whom compliance is critical.

Calcium administration should be in addition to aspirin, as indicated.

5.3. Aspirin

Women at increased risk of preterm pre-eclampsia benefit from receiving low-dose aspirin. However, the magnitude of benefit depends on how their risk is identified, the timing of initiation and dose of aspirin administered, and their adherence to aspirin as prescribed.

Method of risk identification

Women identified as being at increased risk of pre-eclampsia based on clinical risk factors alone benefit from receiving low-dose aspirin (75–162 mg/d), but the risk of pre-eclampsia (RR 0.90, 95% CI 0.84, 0.97) or pre-eclampsia with delivery at <34 weeks (RR 0.90, 95% CI 0.83, 0.98) is reduced by only ≈10%, based on an individual participant data meta-analysis (31 trials, 32,217 women) [108]. However, meta-analyses have illustrated that benefit is related to initiation of aspirin before 16 weeks and at higher dosage, and primarily to prevention of preterm and more severe disease [109–111]. Women who book late for antenatal care may still benefit from aspirin started after 16 weeks, although the reduction in pre-eclampsia has been estimated to be non-significant [109].

Women identified as being at increased risk of pre-eclampsia (of at least 1%) can be identified by the FMP ‘triple test’ of multivariable screening and their risk of preterm pre-eclampsia more than halved (OR 0.38, 95% CI 0.20, 0.74) by low-dose aspirin at a dose of 150 mg each night, from 11 to 14 weeks until 36 weeks (or birth, if earlier) [91]. The benefits were even greater when women complied with at least 90% of tablets (71% of women). However, the risk of term pre-eclampsia was unchanged (OR 0.95, 95% CI 0.57, 1.57). No adverse effects of aspirin were reported. However, in subgroup analyses, participants with chronic hypertension may not have benefited from a reduced risk of...
preterm pre-eclampsia (aOR 1.29, 95% CI 0.33, 5.12), in contrast to other participants (aOR 0.27, 95% CI 0.12, 0.60; p = 0.055), even among women with excellent adherence to aspirin (p = 0.002) [112]. Until this finding can be replicated, it would be prudent to recommend aspirin to women with chronic hypertension and discuss with them the uncertainties.

The cost-effectiveness of a multivariable screen and treat approach has been demonstrated in Canada [113] and Israel [114], and supported by ASPRE data that estimated that the cost of screening would be outweighed by reduced length of neonatal intensive care unit stay (by US $560 per pregnancy screened) [115]. (Approximately 10% of pregnant women screened are screen-positive.) While multivariable screening has been challenged by analyses demonstrating the cost-effectiveness of universal aspirin prophylaxis in pregnancy for all women [116–117] or all nulliparous women [118], these studies did not all account for likely lower adherence with aspirin, reduced effect size, and a potential increase in complications.

Safety

Low-dose aspirin has been widely regarded as safe in pregnancy, although there are signals of small increases in bleeding risk; aspirin has not been associated with miscarriage. Risks, even at a 75 mg dose, but probably higher with increasing dosage [119] have been reported to include vaginal spotting [118,120], antepartum [121–122], intrapartum [123], and postpartum haemorrhage [118,122–123], postpartum haematoma [123], and importantly, a small (0.06%) absolute increase in neonatal intracranial haemorrhage [123], particularly after vaginal birth [123]. Many risks may be mitigated by discontinuing aspirin by 36 weeks based on the lack of effectiveness for prevention of term pre-eclampsia [124]. Risks of aspirin must be seen in the context of important maternal and perinatal risks of pre-eclampsia occurrence, and should dissuade care-providers from instituting universal aspirin prophylaxis, especially as adverse effects of aspirin have been concentrated in trials targeting low-risk women, even when aspirin was stopped before birth, and in observational studies evaluating universal aspirin prophylaxis.

Dose

The ISSHP recognises that different countries have different formulations of aspirin, and it is not possible to cut enteric-coated tablets. In RCTs, doses of 75–162 mg/day have been studied and there are no head-to-head trials of different aspirin doses. Aspirin at a dose <100 mg is not recommended based on platelet insensitivity to aspirin in up to ≈40% of women, particularly as pregnancy progresses and with higher BMI [125–126]; however, at least some component of nonresponsiveness may actually be non-adherence and a lack of exposure of platelets to the aspirin [127]. A dose of 150 mg/day (or 162 mg based on two 81 mg tablets of the available formulation) may be more effective, based on ASPRE [91].

5.4. Other preventative strategies

There is insufficient information at this stage to recommend for or against other preventative strategies, such as oral magnesium, metformin, or statins although several trials are in progress. High-dose folic acid, vitamin C, and vitamin E are not recommended [128]. Low molecular weight heparin (LMWH) has received much attention as a potential preventative strategy for pre-eclampsia and other conditions related to uteroplacental dysfunction. A recent individual patient data meta-analysis including 963 women did not support use of LMWH, given no impact on the primary outcome, a composite of early pre-eclampsia, FGR, and/or pregnancy loss [129]. (These data do not preclude use of LMWH and aspirin for other indications, such as thromboprophylaxis in antiphospholipid antibody syndrome.) Like many other interventions, the hope persists that with improved phenotyping of pre-eclampsia and related placental conditions, future trials will target therapies more effectively in specific groups yielding more positive results.

6. Management

6.1. Place of care

Recommendations

21. Women with pre-eclampsia or severe hypertension should be assessed and managed in hospital, before carefully-selected cases are considered for outpatient care (GPP).

Pre-eclampsia can progress quickly, without warning. The level of BP itself is not a reliable way to stratify immediate risk in pre-eclampsia, because some women may develop serious maternal end-organ or uteroplacental dysfunction at minimally elevated BP. However, when BP elevation is to 160/110 mmHg or above, women require urgent treatment in a monitored setting, given the further elevation in risk of adverse maternal and fetal outcomes [130] and to ensure that antihypertensive is effective in lowering BP. Wherever women with pre-eclampsia receive care, resources should be available to undertake emergent delivery and care for sick mothers and newborns [131]; otherwise, transfer of care should be considered.

Some care outside hospital can be considered for women with non-severe hypertension or pre-eclampsia without maternal end-organ involvement after their initial assessment (Table 1). Models of care could include serial visits to obstetrical day units or home care, but any model should include regular (ideally daily) contact to monitor for disease progression. Women considered for outpatient management should: be informed about concerning symptoms, including when and how to report them and be prepared to do so; be provided with HBPM capability, if possible; live a reasonable distance from hospital; have ready access to maternal and fetal surveillance; and be cared for by an experienced and well-organised team.

6.2. Non-pharmacological therapy

There is insufficient evidence to recommend for or against restricted activity, in hospital or at home, for any HDP. A remotely-published, small trial (218 women) found that for women with gestational hypertension, some bedrest in hospital was superior to unrestricted activity at home [132] which, in a similar trial, was women preferred [133–134]. Concerns about thromboembolism risk should caution practitioners against recommending strict bed rest, due to the potential for harm in the absence of demonstrable benefit.

Uncontrolled hypertension of any type, and pre-eclampsia specifically, are absolute contraindications to exercise [104].

6.3. Antihypertensive therapy

Recommendations

22. Hypertension in pregnancy should be treated with antihypertensive therapy, irrespective of the underlying HDP (⊕⊕⊕O/Strong).

23. Severe hypertension in pregnancy (i.e., sBP ≥160 mmHg or dBP ≥110 mmHg) requires urgent antihypertensive therapy, in a monitored setting (⊕⊕OO/Strong).

24. The target BP for antihypertensive therapy should be a dBP of 85 mmHg, regardless of sBP (⊕⊕⊕/Strong).

25. Non-severe hypertension should be treated with the first-line agents oral methyl dopa, labetalol, or nifedipine (⊕⊕O/Strong).

26. Severe hypertension should be treated with the first-line agents oral nifedipine, oral labetalol, IV labetalol, or IV hydralazine (⊕⊕O/Strong).

Target BP

Hypertension associated with chronic hypertension, gestational hypertension, or pre-eclampsia requires treatment to reduce the likelihood
of developing severe maternal hypertension and other complications, such as low platelets and elevated liver enzymes with symptoms based on the findings from the CHIPS trial [29]. While CHIPS enrolled women with chronic or gestational hypertension, almost half of women developed pre-eclampsia and all stayed on their allocated BP control, for an average of two weeks before birth. In the CHIPS trial, severe hypertension was similar to pre-eclampsia in being a surrogate marker for adverse outcomes [135].

While not all national societies have adopted the results of CHIPS, the ISSHP endorses the perspective that, “To manage BP expectantly at $<160/110$ mmHg, but emergently at $\geq 160/110$ mmHg, is logically inconsistent” [136]. Increasing use of antihypertensive medication in hospitalised women with pre-eclampsia has been associated with a reduced incidence of stroke [137].

The target BP for antihypertensive therapy should be a dBP of 85 mmHg, as in CHIPS [29]. BP control resulted from use of a simple algorithm in which antihypertensive drugs were reduced or ceased if dBP fell to ≤ 80 mmHg, and increased or started if dBP rose to >85 mmHg or sBP were ≥ 160 mmHg (regardless of dBP, for safety) (Fig. 1). This simplified focus on dBP resulted in associated control of sBP, achieving a mean BP of $133/85$ mmHg between randomisation and delivery. The approach to hypertension is the same for women with co-morbidities associated with hypertension, such as chronic renal disease. The only exception is white-coat hypertension unless women develop BP levels $\geq 160/110$ mmHg in the office/hospital setting.

Among hypertensive women, out-of-office BP is usually lower than office BP, but there is wide variation and no consensus about whether an out-of-office BP target should be $130/80$ mmHg (corresponding to an office BP of $135/85$ mmHg) or $135/85$ mmHg (corresponding to an office BP of $140/90$ mmHg) [10]. At present, the ISSHP recommends using similar target BP values for out-of-office and office BP, to minimise the risk of low BP at home. An example of a monitoring strategy is presented in Table 6.

Antihypertensive agents

Antihypertensive therapy is generally safe and benefits outweigh risks.

Initial antihypertensive therapy for non-severe hypertension in pregnancy should be monotherapy from the listed first-line drugs, based on small, randomised trials [138]. The choice of antihypertensive agent should be based on characteristics of the patient, contraindications to a particular drug, and physician and patient preference. Caution should be exercised when using labetalol or other beta-blockers in women with asthma, particularly if not well-controlled, given the slight (about 0.5%) increased risk of status asthmaticus [139]. For women with chronic hypertension, no consistent association has been found between antihypertensive agents and congenital malformations. However, there are lingering concerns that hypertension itself may be associated with an increase in birth defects [140]. Beta-blockers, including labetalol, may increase the risk of neonatal bradycardia and hypoglycaemia, and their use is deemed to warrant newborn blood glucose monitoring in some jurisdictions, such as the UK [141].

No firm conclusions can be drawn with regards to long-term child outcomes given a paucity of relevant high-quality studies designed to examine exposure to antihypertensives [142]. Child outcomes at up to 5 years of age were reassuring following exposure to nifedipine for tocolysis [143].

Additional antihypertensive drugs should be used if target BP levels are not achieved with standard-dose monotherapy [144], at least to a mid-range dose; add-on drugs should be from a different drug class chosen from first-line or second-line options [144], Table 7 presents a suggested dosing escalation protocol. Less commonly-used but acceptable second-line antihypertensive agents include other beta-blockers (e.g., metoprolol) [138]. Other potential agents are not usually first line therapies, but are not contraindicated, based on limited trial data (e.g., amlodipine or diltiazem) or proven concerns about maternal tachycardia when used alone (i.e., oral hydralazine, stillbirth in the setting of pre-eclampsia (i.e., prazosin), or theoretical hazards of reduced maternal circulating volume (i.e., diuretics).

ISSHP recommendations are based on BP values, but there is potential in future to further personalise management, using demographic (Black race) and haemodynamic parameters (lower heart rate and cardiac stroke volume, and higher peripheral vascular resistance). Together, these may identify women who respond better to nifedipine than labetalol [145], a particularly important group more often associated with severe hypertension and FGR, and more likely to respond to a vasodilator (e.g., nifedipine). In contrast, women of non-Black race and with higher heart rate and stroke volume, described as being

Fig. 1. Algorithm used in the CHIPS trial to achieve BP control (from Magee et al. Ultrasound Obstet Gynecol 2020; 56: 7–10). dBP (diastolic blood pressure), sBP (systolic blood pressure). *If systolic BP (sBP) is ≥ 160 mmHg, increase dose of existing medication or start new antihypertensive medication to get sBP <160 mmHg, regardless of diastolic BP. Women require urgent treatment in a monitored setting.
“hyperdynamic”, were more successfully treated with oral labetalol; in a small observational study (84 women) of haemodynamic-guided antihypertensive therapy for BP $\geq 140/90$ mmHg guided by this model, antihypertensive management was altered for half of women, and the incidence of severe hypertension requiring high dependency unit admission was reduced by 60%, with no increase in FGR [146]. There are no relevant RCTs.

Oral antihypertensives can be given in labour; if BP control is sub-optimal, this may be due to reduced absorption because of gastrointestinal motility and parenteral agents may be needed.

Table 6

<table>
<thead>
<tr>
<th>BP level</th>
<th>BP (mmHg)</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dBP*</td>
<td>Next BP</td>
</tr>
<tr>
<td>Very high</td>
<td>≥ 105</td>
<td>Sit quietly for 5 min, measure BP again, and send in readings</td>
</tr>
<tr>
<td>High</td>
<td>90-104</td>
<td></td>
</tr>
<tr>
<td>High-normal</td>
<td>86-89</td>
<td>If repeat BP still high-normal, contact care-provider within 24 hours</td>
</tr>
<tr>
<td>Normal</td>
<td>81-85</td>
<td>As planned</td>
</tr>
<tr>
<td>Low-normal</td>
<td>75-80</td>
<td>If not taking BP medication, continue as planned</td>
</tr>
<tr>
<td>Low</td>
<td><75</td>
<td>If taking BP medication, sit quietly for 5 min, measure BP again, and send in readings</td>
</tr>
</tbody>
</table>

BP (blood pressure), dBP (diastolic blood pressure).

* If at any time, sBP is ≥ 155 mmHg, BP should be considered very high and actions taken accordingly.

Table 7
Maintenance therapy and suggested dose titration of antihypertensive therapy for non-urgent control of hypertension in pregnancy (modified from Magee et al 2020) [147].

<table>
<thead>
<tr>
<th></th>
<th>Low *</th>
<th>If BP not controlled</th>
<th>Medium</th>
<th>If BP not controlled on medium dosage</th>
<th>High†</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST-LINE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labetalol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Contraindicated with poorly-controlled asthma</td>
<td>100 mg three to four times/day</td>
<td>200 mg three to four times/day</td>
<td>300 mg three to four times/day</td>
<td>1200 mg/day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• May cause neonatal bradycardia and hypoglycaemia and warrants newborn screening</td>
<td>10 mg two to three times/day</td>
<td>20 mg two to three times/day</td>
<td>30 mg two times/day</td>
<td>120 mg/day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nifedipine PA or MR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Contraindicated with aortic stenosis</td>
<td>30 mg once/day</td>
<td>30 mg two times/day or 60 mg once/day</td>
<td>30 mg each morning and 60 mg each evening</td>
<td>120 mg/day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nifedipine XL or LA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyldopa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• May cause maternal depression</td>
<td>250 mg three to four times/day</td>
<td>500 mg three to four times/day</td>
<td>750 mg three times/day</td>
<td>2250 mg/day</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LA (long-acting), MR (modified release), PA (prolonged action), XL (extended release).

* Starting doses are higher than generally recommended for adults given more rapid clearance in pregnancy.
† When a medication is at high (or maximum) dosage, consider using a different medication to treat any severe hypertension that may develop.
Angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) should not be used in women once pregnant based on fetotoxicity, manifest as fetal renal toxicity and its consequences, including stillbirth; the risk appears to be particularly high with ARBs [147]. For women with chronic hypertension, these medications do not appear to be teratogenic [148–150], and in fact, prior associations with birth defects may have been due to the underlying hypertension itself [151]. As such, it is acceptable to continue ACE inhibitors or ARBs until pregnancy is diagnosed if the drugs are administered for renoprotection, given that the risk of ACE inhibitor and ARB fetotoxicity may be greatest with exposure after 20 weeks [147]. However, as the literature is not uniformly reassuring, with reports of an excess of pregnant complications even when ACE inhibitors and ARBs are stopped in early pregnancy [152], it is prudent to switch to another antihypertensive pre-pregnancy, when clinically possible.

Severe hypertension

No trials have demonstrated that antihypertensive therapy is superior to placebo/no therapy for severe hypertension. However, such trials would be unethical. Severe hypertension is a surrogate marker for adverse maternal and perinatal outcomes [130] and there is consensus that it should be treated. Treatment within 60 min may decrease the incidence of severe maternal morbidity [153]. Advice to lower BP gradually is based on exacerbation of cerebral ischaemia in stroke and an excess of adverse perinatal outcome among women treated with agents that lower BP quickly [154]. Nevertheless, success has been achieved without adverse effects when BP has been lowered within one hour [155].

The most commonly-recommended agents for treatment of severe hypertension are IV labetalol, oral nifedipine, and IV hydralazine. [156] By network meta-analysis (51 trials), each of these three medications achieved target BP in a similar number of women (32 trials, 3236 women), although more quickly with nifedipine than IV hydralazine. [157] There was no difference in effectiveness between IV labetalol and either oral nifedipine or IV hydralazine, but more data were needed to compare oral nifedipine and IV hydralazine. A second network meta-analysis restricted to first-line agents (17 trials, 1591 women) found that oral nifedipine more successfully treated severe hypertension than IV hydralazine [158].

A recent, open-label RCT showed that, in low-resource settings, oral nifedipine (PA), labetalol, and methyldopa each successfully treated severe hypertension (without causing maternal or fetal adverse effects) in the majority (at least 75%) of women [159]. However, as single drugs, nifedipine PA and oral labetalol (compared with methyldopa) were less often associated with the need to administer a second agent (1% vs. 3% vs. 19%). While all women with severe hypertension have an obstetric urgency, oral therapy may facilitate earlier treatment while en route to a monitored setting, or more timely treatment in that setting.

Second-line agents include other beta-blockers, other calcium channel blockers, and prazosin. [160]

Local protocols should outline the nature and frequency of maternal and fetal monitoring in hypertensive pregnancy, as well as when to repeat a dose of antihypertensive medication if BP is not well-controlled [161]. To harmonise protocols between medications and minimise the risk of maternal hypotension, a suggested approach is outlined in Table 8. Delayed treatment of severe hypertension has been associated with prior non-severe hypertension, lack of pre-eclampsia symptoms, white race, presentation overnight, having labour-related symptoms, and later gestational age [162].

Antihypertensives, including nifedipine, can be used contemporaneously with magnesium sulphate (for eclampsia prevention or treatment) [163].

6.4. Plasma volume expansion

Recommendations

27. Plasma volume expansion is not recommended routinely for women with pre-eclampsia. (☆☆☆☆O/Strong).

Data on fluid management in pre-eclampsia are limited. A recent systematic review (6 trials) showed that colloid volume expansion reduced maternal BP, but no other benefits or harms were demonstrated [164], unlike the largest trial in which multiple adverse effects were demonstrated (i.e., Caesarean delivery, reduced pregnancy prolongation, and more frequent pulmonary oedema) [165]. For women with pre-eclampsia, total fluid intake in labour is usually restricted to ≈80 mL/hour to minimise the risk of pulmonary oedema without increasing the risk of acute kidney injury [166].

6.5. Magnesium sulphate

Recommendations

28. Women with eclampsia should receive magnesium sulphate to prevent recurrent seizures (☆☆☆☆/Strong).

Table 8

Suggested dose titration of antihypertensive therapy for urgent control of hypertension in pregnancy* (from Magee et al 2020) [164].

<table>
<thead>
<tr>
<th>Caution</th>
<th>T0</th>
<th>T 30 min</th>
<th>T 60 min</th>
<th>T 90 min</th>
<th>T 120 min</th>
<th>T 150 min</th>
<th>T 180 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labetalol (oral)</td>
<td>• Contra-indicated with uncontrolled asthma or heart failure</td>
<td>200 mg</td>
<td>–</td>
<td>200 mg</td>
<td>–</td>
<td>200 mg</td>
<td>–</td>
</tr>
<tr>
<td>Labetalol (IV intermittent)</td>
<td>• May cause maternal headache and neonatal hypoglycaemia and warrants newborn screening in some jurisdictions</td>
<td>10–20 mg</td>
<td>20–40 mg</td>
<td>40–80 mg</td>
<td>40–80 mg</td>
<td>40–80 mg</td>
<td>–</td>
</tr>
<tr>
<td>Labetalol (IV infusion)</td>
<td>• May cause maternal bradycardia and neonatal hypoglycaemia and warrants newborn screening in some jurisdictions</td>
<td>0.5–2 mg/min</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Nifedipine (oral tablet or capsule, either of which to be swallowed whole, NOT bitten or punctured)</td>
<td>• May cause maternal headache and tachycardia</td>
<td>10 mg</td>
<td>10 mg</td>
<td>–</td>
<td>10 mg</td>
<td>–</td>
<td>10 mg</td>
</tr>
<tr>
<td>Hydralazine (IV)</td>
<td>• Onset of action may be delayed</td>
<td>1000 mg</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Methyldopa (oral)</td>
<td>• May increase risk of maternal hypertension, and maternal and fetal tachycardia</td>
<td>5 mg</td>
<td>5–10 mg</td>
<td>5–10 mg</td>
<td>5–10 mg</td>
<td>mg</td>
<td>mg</td>
</tr>
</tbody>
</table>

* When severe hypertension has resolved, switch to routine oral medication.
1 If nifedipine or hydralazine were the initial drug used, choose oral labetalol or oral methyldopa as the alternative.
1 Double the initial dose of labetalol IV.
1 Do not exceed the maximum dose of IV labetalol, which is 300 mg total in a treatment course.
1 Do not exceed the maximum dose of IV hydralazine of 20 mg.
29. Women with pre-eclampsia who have proteinuria and severe hypertension, or hypertension with neurological signs or symptoms, should receive magnesium sulphate for eclampsia prevention (⊕⊕⊕⊕/Strong).

There is clear evidence that magnesium sulphate halves both the incidence and recurrence of eclampsia [167–168]. The number-needed-to-treat (NNT) is ≈100 to prevent one seizure. However, it is controversial whether all women with pre-eclampsia should receive magnesium sulphate, due to an elevated risk of Caesarean delivery, more maternal adverse effect risks, and higher costs (i.e., US$23,000 to prevent one seizure if administered to all women with pre-eclampsia) [169]. As the NNT is lower (⩽50), it is reasonable in well-resourced settings to restrict magnesium sulphate use to women with ‘severe’ pre-eclampsia as defined by the Magpie trial: severe hypertension and at least 3+ of proteinuria, or slightly lower measurements (150/100 mmHg and least 2+ of proteinuria) in the presence of at least two signs or symptoms of ‘imminent eclampsia’ (which was not defined but is taken to mean headache, visual symptoms, or clonus). Each unit should have a consistent policy concerning their use of magnesium sulphate and the monitoring of women and babies receiving this therapy.

The dosing regimens used in the Eclampsia and Magpie trials are recommended, as outlined in Table 9, along with a protocol for monitoring and treatment of toxicity. There are a few points worthy of particular discussion. First, magnesium sulphate comes in different concentrations and ampoules of different volume, and some sites have the drug pre-mixed for administration; if mixing is required, this should be done according to local protocols. Second, while alternative magnesium sulphate regimens (using lower doses or being more restricted in duration) have been evaluated, data are currently insufficient to inform clinical practice [170]. Unless there is renal impairment, standard doses should be used until further evidence is published on the effectiveness of administration that is reduced in dose or abbreviated in duration. Finally, magnesium sulphate may be administered while women at preterm gestational ages are being considered for expectant care; if investigations reveal that they do not require immediate birth, it is reasonable to stop magnesium sulphate and re-evaluate its need when timed birth is considered or there is spontaneous onset of labour.

When not indicated for seizure prophylaxis or treatment, administration of magnesium sulphate for fetal neuroprotection should be considered when delivery is imminent at <33-34 weeks [171].

6.6. Timed birth

Recommendations

30. Indications for delivery with any HDP at any gestational age (⊕⊕⊕⊕O/Strong) include:

- Abnormal neurological features (such as eclampsia, severe intractable headache or repeated visual scotomata);
- Repeated episodes of severe hypertension despite maintenance treatment with three classes of antihypertensive agents;
- Pulmonary oedema;
- Progressive thrombocytopenia or platelet count <50 × 10⁹/ℓ;
- Transfusion of any blood product;
- Abnormal and rising serum creatinine;
- Abnormal and rising liver enzymes;
- Hepatic dysfunction (INR > 2 in absence of DIC or warfarin), haematoma or rupture;
- Abruptio with evidence of maternal or fetal compromise; or
- Non-reassuring fetal status (including death)

Recommendations

31. A decision to deliver should not be based solely upon the degree of either proteinuria (⊕⊕O/O or Strong) or hyperuricaemia (⊕⊕O/O/Strong).

(See Table 10 for recommendations according to gestational age.)

Indications for planned birth, regardless of gestational age, apply to ‘complicated’ pre-eclampsia (i.e., involving end-organ complications that are associated with a heightened risk of maternal or perinatal death) [172]. At present, angiogenic imbalance (i.e., maternal blood levels of sFlt-1 and/or PI GF) in itself is not an indication for delivery. If timing allows, delivery should occur in a perinatal centre capable of caring for sick mothers and newborns.

Recommendations for timing of delivery based on gestational age are presented in Table 10.

- Pre-viability, expectant care of pre-eclampsia is associated with very high perinatal mortality (>80%), as well as frequent maternal complications (in 27–71% of cases) that may include death [173–174].
- Termination of pregnancy should be discussed and patient values considered, along with transfer of care to a referral hospital.
- From viability to 33-34 weeks, the limited evidence favours expectant care when there is no clear indication for birth. By systematic review (6 trials, 748 women), interventionist (vs. expectant) care was associated with earlier gestational age at birth by >10 days (mean –9.91 days, 95% CI –16.37, –3.45), similar maternal outcomes (but very wide CIs), but more neonatal morbidity (i.e., intraventricular haemorrhage [RR 1.94, 161

Table 9

Magnesium sulphate dosing and monitoring (modified from Brown et al. 2018) [2]

<table>
<thead>
<tr>
<th>Dosing [168,171]</th>
<th>Observations</th>
<th>Signs of toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV administration</td>
<td>Loading dose</td>
<td>Maintenance</td>
</tr>
<tr>
<td>4 g MgSO₄ IV in 100 mL normal saline, infused over 20 min using an infusion device</td>
<td>4 g MgSO₄ IV in 100 mL normal saline, infused over 20 min using an infusion device and 5 g IM into each buttock (for a total of 10 g)</td>
<td>5 g IM into ONE buttock every 4 hrs</td>
</tr>
<tr>
<td>Combined IV and IM administration</td>
<td>Reflexes</td>
<td>Decreased or absent</td>
</tr>
<tr>
<td>Upon completion of loading dose</td>
<td>BP</td>
<td>Lower</td>
</tr>
<tr>
<td>Every 30 min</td>
<td>Heart rate</td>
<td>Lower or cardiac arrhythmias</td>
</tr>
<tr>
<td></td>
<td>Respiratory rate</td>
<td><12/min for 15 min</td>
</tr>
<tr>
<td></td>
<td>Pulse oximetry (if available)</td>
<td>O₂ saturation <94% for 15 min</td>
</tr>
<tr>
<td>Every hr</td>
<td>Urine output</td>
<td><30 mL/hr for 4 hrs</td>
</tr>
<tr>
<td></td>
<td>Reflexes</td>
<td>Decreased or absent</td>
</tr>
<tr>
<td></td>
<td>Symptoms</td>
<td>Central nervous system (e.g., excessive drowsiness, slurred speech)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neuromuscular (e.g., muscle weakness)</td>
</tr>
<tr>
<td>Fetal</td>
<td>Continuous cardiotocography</td>
<td>≥26 wks</td>
</tr>
<tr>
<td><26 wks</td>
<td>Intermittent fetal heart rate auscultation every 30 min</td>
<td></td>
</tr>
</tbody>
</table>

*Administration can be switched to IV dosing by starting 1 g/hr (without a loading dose) when the next dose of IM MgSO₄ is due.

†If toxicity is suspected, cease the MgSO₄ infusion and take blood for serum Mg level. If toxicity is clear, administer calcium gluconate 10% (10 mL in 100 mL normal saline IV over 10 min).

‡Monitoring of serum Mg levels is not necessary unless there is decreased renal function or signs of toxicity.

§Foley catheterisation is recommended.

∥Decreased urine output is included because it increases the risk of toxicity.

¶Symptoms of toxicity should be distinguished from well-known side effects, which include: flushing of the skin, a metallic taste in the mouth, sweating, nausea and vomiting, heaviness in the chest, palpitations, and lowering of the BP initially.
Table 10
Recommendations for timing of birth.

<table>
<thead>
<tr>
<th>Gestational age</th>
<th>Pre-eclampsia</th>
<th>Gestational hypertension</th>
<th>Chronic hypertension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-viability</td>
<td>Termination of pregnancy should be discussed (OO/Strong)</td>
<td>Expectant management should be considered, but only in hospitals where very preterm infants and sick mothers can be cared for (OO/Weak)</td>
<td>Expectant care is recommended unless there is an indication for birth (OO/Strong)</td>
</tr>
<tr>
<td>34+0 to 36+6 weeks</td>
<td>Expectant care is recommended unless there is an indication for birth (OO/Strong)</td>
<td>Women who reach 40+6 weeks should be offered delivery (OO/Strong)</td>
<td>Women who reach 40+6 weeks should be offered delivery (OO/Strong)</td>
</tr>
<tr>
<td>≥37+0 weeks</td>
<td>Initiation of delivery is recommended (OO/Strong)</td>
<td>Women who reach 40+6 weeks should be offered delivery (OO/Strong)</td>
<td>Initiation of delivery may be offered at 38+0 to 39+6 weeks (OO/Weak)</td>
</tr>
</tbody>
</table>

95% CI 1.15, 3.29, hyaline membrane disease [RR 2.30, 95% CI 1.39, 3.81], and ventilation [RR 1.50, 95% CI 1.11, 2.02], despite fewer babies being SGA (RR 0.38, 95% CI 0.24, 0.61) [175].

At 34+0-36+6 weeks, there are maternal benefits of delivery but also neonatal risks, particularly where antenatal corticosteroids are not routinely administered at this gestational age. In the PHOENIX trial (UK) in which expectant care was associated with more neonatal unit admission, but not more neonatal respiratory illness, most (60%) women had received antenatal steroids [176], whereas in the HYPITAT II trial in which immediate delivery was associated with more neonatal respiratory distress syndrome, only 1% of women had received steroids [177]. An individual patient data meta-analysis suggested that neonatal risk may not be increased from 36+6 weeks, also consistent with subgroup analyses in PHOENIX [176,178]. Nevertheless, child neurodevelopment to the age of 5 years appears to be similar after either interventionist or expectant care [179].

RCT data for 50 women with chronic hypertension suggests that initiation of delivery at 37+0 weeks is associated with an excess of neonatal morbidity [180].

At term (≥37+0 weeks), women with pre-eclampsia should be offered birth based on the results of the HYPITAT trial [181]. The 2/3 of women in HYPITAT who had gestational hypertension at term experienced no reduction in poor maternal outcome (OR 0.81, 95% CI 0.63, 1.03), raising questions about whether these women benefit from timed birth [182]. Women with preterm gestational hypertension [183] or those with chronic hypertension [184-185] may benefit from timed birth at 38+0-39+6 weeks, based on observational data; there is one ongoing trial (ISRCTN77725829).

Decision aids and risk communication strategies should be used to support patient education and truly informed consent.

6.7. Antenatal corticosteroids

Recommendations

32. Do not administer corticosteroids to hasten resolution of HELLP syndrome (OO/Strong)

Antenatal corticosteroids, in a single course, should be administered to women with HDPs in line with recommendations for any woman at <34+0 weeks who is at risk of birth within the next 7 days, to reduce neonatal death and neonatal morbidity, respiratory distress, and intraventricular haemorrhage [186]. This is true in all settings where gestational age can be accurately assessed [187]. A single repeat course of steroids can be administered prior to 34 weeks if the woman remains pregnant at least 7 days (WHO) to 14 days (ACOG) after the initial course, and she remains at high risk of preterm birth within the next 7 days [188]. Corticosteroids can be administered between 34+0 and 36+6 weeks in women with pre-eclampsia or gestational hypertension at risk for delivery, among women with singleton pregnancies who have not received steroids before and are non-diabetic [189].

Steroids should not be specifically administered for HELLP syndrome. While they may transiently improve platelet count and other laboratory values in HELLP, they have not been proven to reduce adverse outcomes and they have common adverse effects, such as hyperglycaemia and further elevation of BP [190-191].

6.8. Novel therapies

Currently, there is no treatment for pre-eclampsia other than timed birth. Many therapies are being (e.g., statins, metformin) evaluated, at various gestational ages or stages of disease, for their theoretically positive effects on the pathogenesis of pre-eclampsia, particularly angiogenic imbalance and maternal systemic endothelial dysfunction and/or inflammation. A major barrier to progress is limited safety data, but this is being addressed by repurposing drugs acceptable for use in pregnancy, as well as novel nanoparticle delivery systems adapted from oncology [192].

7. Postpartum care

Recommendations

33. For women with antepartum hypertension, BP should be monitored at least once on days 3–7 postpartum when it is likely to be highest after birth (GPP).

34. Antihypertensive therapy administered antepartum should be continued after birth. Also, consideration should be given to administering antihypertensive therapy for any hypertension diagnosed before six days postpartum (OO/Weak)

35. The target dBP for postpartum antihypertensive treatment should be 85 mmHg, as antenatally (OO/Weak)

36. Non-steroidal anti-inflammatory drugs (NSAIDs) for postpartum analgesia may be used in women with pre-eclampsia if other analgesics are ineffective, and there is no AKI or other risk factors for it (OO/Weak)

37. Breastfeeding is recommended (OO/Strong)

38. Counselling should be provided about the risks of gestational hypertension (at least 4%) or pre-eclampsia (at least 15%) in future pregnancy (GPP)

39. At 3 months postpartum, all women should be reviewed to ensure that BP, urinalysis, and any laboratory abnormalities have normalised. If proteinuria or hypertension persist, then appropriate referral for further investigations should be initiated (GPP).

40. At 6 months postpartum, where possible, all women should be reviewed again, at which point we suggest that BP ≥ 120/80 mmHg lead to discussion of lifestyle change (OO/Weak)

41. Following hypertensive pregnancy, particularly pre-eclampsia, counselling should be provided about the heightened health risks for the mother (particularly cardiovascular) and the offspring (OO/Weak)
7.3. Long-term health risks

The long-term risks of pre-eclampsia, and gestational hypertension, are now well-established [210]. These women have greater propensity to developing cardiovascular disease risk factors (like hypertension), diabetes mellitus (a cardiovascular disease ‘equivalent’), cardiovascular disease (including stroke or death) [211–212], in addition to venous thromboembolic disease (VTE), vascular dementia, and CKD.

How best to decrease these cardiovascular risks is a challenge, related to suboptimal engagement of women, high attrition, and a lack of evidence that shows that intervention following hypertensive pregnancy reduces long-term events. However, many risk factors for long-term cardiovascular and metabolic disease are modifiable and related to healthy lifestyle (i.e., healthy eating and physical activity) and good control of risk factors (i.e., smoking cessation, achieving a normal BMI and BP) [213].

Following hypertensive pregnancy, all women should be offered lifestyle advice according to international guidelines (e.g. https://www.heartfoundation.org.au and Diet and Physical Activity Guidelines for Americans 2018, available from https://health.gov/dietaryguidelines/ and https://health.gov/paguidelines/).

There is no evidence-based schedule of assessments for women following hypertensive pregnancy, but the following has been proposed and presented in a ‘My Health Beyond Pregnancy’ tool [214]:

- 6–12 weeks postpartum: for a simple cardiovascular screening with a general practitioner or obstetrician, to assess cardiovascular risk based on risk factors, physical activity and at minimum, BP. Of note, values that we use to define normal BP in the community are derived from older and often male populations; ongoing studies will define a new ‘normal’ range of BP for young women who have not had pre-eclampsia. Lifestyle advice should be offered.
- 6 months postpartum: BP should be <120/80 mmHg [215]; if higher than this, then women should be alerted to the fact that their BP is abnormal and encouraged to increase lifestyle measures to lower BP.
- 1 year post-partum: for a similar visit to the 6–12 week postpartum visit, with additional testing of LDL, triglycerides and total cholesterol, fasting blood glucose, HbA1c, high sensitivity C-reactive protein (CRP), and urinary albumin:creatinine ratio. Also, even with an elevated lifetime risk of cardiovascular disease, young women may have low 10-year cardiovascular risk scores using well-established risk tools, and may be overlooked as being at high risk on that basis [216]. Therefore, we do not recommend a sole reliance on such tools to predict cardiovascular risk in these women. Lifestyle advice should be offered. Referral to specialists and drug therapy for hyperlipidaemia, abnormal glucose metabolism or high BP should follow local/national guidelines for primary prevention of cardiovascular disease.
- Annual medical review with a general practitioner for women at highest risk (such as those with a family history of cardiovascular disease or those with recurrent preterm pre-eclampsia), particularly during the first 5–10 years after hypertensive pregnancy when cardiovascular risk factors and disease appear most frequently [217].

The offspring of women with hypertensive pregnancy appear to be at increased risk of cardiovascular disease and CKD. Consideration should be given to monitoring them for hypertension. Parents should encourage healthy lifestyle for their offspring to mitigate their increased cardiovascular disease risk [218–219].
8. Application of these guidelines to less health developed countries

Less health developed countries have variably robust public and private health systems; private health care in the Western Cape, South Africa, differs greatly from maternity care in a refugee camp in northern Syria. In settings with overburdened and fragile health systems, where most maternal-newborn care is provided by non-experts, the question arises about how best to interpret and implement these recommendations.

In our opinion, all health systems should prioritise the provision of all elements of the Implementation Package (see below). Some practical points are expanded here.

- Regular antenatal care, in addition to adequate obstetric support, is important to reduce maternal and offspring mortality and morbidity.
- Access to the low-cost and validated Microlife CRADLE VSA BP device would provide accurate BP readings in pregnant and hypertensive pregnant women [220].
- The Fetal Medicine Foundation model is more accurate than clinical risk factor assessment in identifying women at risk of preterm pre-eclampsia, and aspirin (which is ubiquitous) reduces that risk.
- In countries with limited formulaires, effective antihypertensives may include beta-blockers that are not usually prescribed in more-developed country settings (e.g., propranolol, metoprolol). Methyldopa is generally the cheapest antihypertensive medication that has been rigorously evaluated in both non-severe and severe pregnancy hypertension. Methyldopa, nifedipine (as a tocolytic), hydralazine and amlodipine are on the WHO List of Essential Medicines (2019) [221].
- The broad definition of pre-eclampsia should be used, especially where cost and access to tocolytic can limit the use of dipstick screening for proteinuria.
- The miniPIERS model can identify risk of adverse outcomes using clinical symptoms and signs in hypertensive pregnant women, especially with the addition of accurate pulse oximetry.
- Magnesium sulphate is on the WHO List of Essential Medicines (2019). However, supply chains can be unreliable and public health system provision is not uniform.
- Measurement of BP in hypertensive women on postpartum days 3–6 may require task-sharing to community health workers, as achieved in the Community-Level Interventions for Pre-eclampsia Trials [222].

9. How our guidance compares with other international and national guidance

The ISSHP has the shortest cycle for guideline update in keeping with our commitment to regular updates, in order to reduce confusion and promote discussion about the most recent pregnancy hypertension research.

Compared with a previous systematic review of pregnancy hypertension guidelines (2014) [223], there has been an increase in the number of clinical practice guidelines (from 13 to 15) with all those published within the last 10 years having been updated in part or in whole [156]. Table 11 indicates that there remains broad agreement in a number of areas, and where there is disagreement, consensus is building.

The key areas in which these guidelines differ are: incorporation of angiogenic markers into the assessment of pre-eclampsia risk (i.e., 1st trimester screening) and assessment of suspected pre-eclampsia (after 20–24 gestational weeks) as a marker of uteroplacental dysfunction, and detailed advice about titration of antihypertensive therapy dose and polytherapy.

Guidelines focused on under-resourced settings include those of WHO 2011 and FIGO. IMPAC 2016 also provides pregnancy hypertension guidance, although it is a compilation of decision algorithms to

Table 11

<table>
<thead>
<tr>
<th>Areas of agreement</th>
<th>Areas of disagreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definitions of hypertension, proteinuria, chronic hypertension, gestational hypertension, and pre-eclampsia</td>
<td>The definition of ‘severe’ pre-eclampsia and use of the term.</td>
</tr>
<tr>
<td>Prevention of pre-eclampsia with low dose aspirin & supplemental calcium (if low calcium intake)</td>
<td>Target blood pressure when hypertension is not severe</td>
</tr>
<tr>
<td>Treatment of severe hypertension</td>
<td>Timing of delivery for women with chronic hypertension, gestational hypertension, or preterm pre-eclampsia</td>
</tr>
<tr>
<td>Use of magnesium sulphate for eclampsia & ‘severe’ pre-eclampsia</td>
<td>Use of magnesium sulphate for fetal neuroprotection when pre-eclampsia is not ‘severe’</td>
</tr>
<tr>
<td>Use of antenatal corticosteroids to enhance fetal lung maturity at ≥34 weeks’ gestation if delivery is likely within the next 7 days</td>
<td>Post-partum maternal monitoring</td>
</tr>
<tr>
<td>Delivery for pre-eclampsia at term</td>
<td>Oxytocin as an element of the active management of the third stage of labour</td>
</tr>
</tbody>
</table>

Table 12

Implementation priorities.

Measure BP with a device validated for use in pregnancy and postpartum
Assess the risk of pre-eclampsia at antenatal care booking and prescribe aspirin for women identified as being at increased risk. Treat hypertension (BP ≥ 140/90 mmHg) with antihypertensive therapy, antepartum and postpartum
Define pre-eclampsia according to gestational hypertension with maternal, fetal, or placental complications, and not just new proteinuria
Assess the risk of adverse maternal outcomes in hypertensive women using the fullPIERS or miniPIERS models
Deliver women with complicated pre-eclampsia regardless of gestational age (see ‘Management/Timing of Birth’)
Time delivery from 37 weeks for women with uncomplicated pre-eclampsia
Use magnesium sulphate to treat eclampsia or pre-eclampsia with proteinuria and severe hypertension, or any hypertension with neurological signs or symptoms
Measure BP postpartum, at least once on days 3–7 after hypertensive pregnancy

Table 13

Research recommendations.

Evaluate whether routine proteinuria screening in normotensive women is associated with improved outcomes
Assess whether self-monitoring of BP reduces adverse pregnancy outcomes among women with pregnancy hypertension, or those at high risk of pre-eclampsia
Incorporate women’s views into decisions about personalised risk stratification for pre-eclampsia and associated prophylaxis with aspirin
Determine the cost-effectiveness of using a broad ISSHP definition of pre-eclampsia, rather than a restrictive one based only on new hypertension and proteinuria
Investigate whether haemodynamic-guided antihypertensive therapy can achieve maternal BP control and optimise perinatal outcomes
Establish whether angiogenic markers add prognostic value to the broad definition of pre-eclampsia or either the fullPIERS or miniPIERS modes for prediction of adverse short- and long-term maternal outcomes in pre-eclampsia
Establish mechanisms to engage women in cardiovascular risk reduction following hypertensive pregnancy

guide practice, rather than a clinical practice guideline per se.

Table 12 presents an implementation package. Table 13 presents research recommendations.

10. Future directions

The ISSHP aims to update these recommendations every two years. We invite feedback to info@isshp.org.
11. Contributions

The first and second authors (LAM and MB) drafted the initial document following contributions from all co-authors that collectively represent the Executive and Council of the ISSHP (LAM, MAB, DRH, AH, SAK, LCC, FM, SR, SS, PdV, AS). Further input was sought from additional authors (JM, SG, LP, AS) who have expertise in the long-term cardiovascular follow-up, management of hypertensive disorders in critical regions or less-resourced settings and/or represent other important international organisations (NICE, UK; Global Pregnancy Collaboration; World Gestosis; and FIGO).

Funding

There were no sources of funding for this manuscript.

Declaration of Competing Interest

The following authors had no disclosures: Magee LA, Brown MA, Gupta S, Hall DR, Hennessy A, McCarthy FP, and Saito S. Kenny LC is a minority shareholder in Metabolomic Diagnostics, a company which has licenced intellectual property pertaining to biomarkers for the prediction of pre-eclampsia.

Karumanchi SA disclosed patents on biomarkers held by Harvard hospitals, and is a consultant to Thermofisher Scientific, Roche, and Aggamin LLC.

Myers JE has led research studies related to the implementation of angiogenic markers for the diagnosis of pre-eclampsia, received industry funding from Alere and Roche to fund biomarker tests, and is a member of the NICE Diagnostic Assessment Panel.

Poon LC has received in-kind contributions from PerkinElmer Inc., Thermo Fisher Scientific and Roche Diagnostics and reports serving as consultant to Roche Diagnostics.

Rana S reports serving as consultant to Thermo Fisher Scientific and Roche Diagnostics.

Staff A has received compensation from Roche Diagnostics for Advisory Board service in 2018 regarding preeclampsia screening, and reagents for sFlt-1 and PlGF biomarker analyses from Roche Diagnostics (Rotkreuz, Switzerland).

von Daelenspen P has received speaker’s fees and grants-in-aid from Alere Incorporated.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.preghy.2021.09.008.

References

L.A. Magee et al.

168

[218] I.V. Alsnes, L.J. Vatten, A. Fraser, et al., Hypertension in pregnancy and offspring cardiovascular risk in young adulthood: prospective and sibling studies in the HUNT study (nor-d-trondelag health study) in Norway, Hypertension (Dallas, Tex) 2017 (69) (1979) 591–596.

